电话:010-62796167
传真:010-62784655
E-mail:qcxbgs@tsinghua.edu.cn
澳门太阳娱乐网站官网副研究员
博士生导师
地址:北京市海淀区澳门太阳娱乐网站官网李兆基科技大楼A359
邮编:100084
电话:010-62791004
邮箱:mafh@tsinghua.edu.cn
西安交通大学学士、硕士、博士(1985-1997)
1997-1999 北京理工大学 博士后
1999.08-2002.12 澳门太阳娱乐网站官网 讲师
2002.12-至今 澳门太阳娱乐网站官网 副研究员
1. 氢内燃机燃烧、排放与控制
2. 加氢站与氢储供系统技术
3. 天然气管道输氢与氢安全技术
部分研究项目和课题
序号 | 项目课题名称 | 项目来源 | 项目牵头单位 | 项目负责人/负责任务 |
1 | 氢气/天然气发动机开发 | 科技部 | 澳门太阳娱乐网站官网 | 马凡华 |
2 | H2/CH4/CO混合气体燃料内燃机燃烧与排放研究 | 国家自然科学基金 | 澳门太阳娱乐网站官网 | 马凡华 |
3 | 可再生能源制氢及HCNG城市客车研发 | 科技部 | 澳门太阳娱乐网站官网 | 张俊智 马凡华 |
4 | 天然气制氢与高压氢气加氢站研发 | 科技部 | 清华同方股份有限公司 澳门太阳娱乐网站官网 | 祚玉群 马凡华 |
5 | 高效环保农用柴油机研发 | 科技部 | 天津雷沃动力公司 澳门太阳娱乐网站官网 | 马凡华(课题负责人) |
6 | 基于燃料电池汽车氢源基础设施的氢能利用关键技术合作研究 | 科技部 | 澳门太阳娱乐网站官网 | 马凡华 |
7 | 与加拿大开展氢能汽车动力系统国际合作与交流 | 科技部 | 澳门太阳娱乐网站官网 | 马凡华 |
8 | 70MPa加氢站用加压加注设备 | 内蒙古自治区重大科技专项 | 澳门太阳娱乐网站官网 | 马凡华 |
9 | 电控喷射单燃料CNG(压缩天然气)公交车的研究开发 | 科技部十五重点攻关项目 | 东风汽车 公司 澳门太阳娱乐网站官网 | 吴新潮 马凡华 |
10 | 车载高压供氢瓶及组合阀研究开发 | 科技部 | 中材科技 有限公司 澳门太阳娱乐网站官网 | 鲁博 马凡华 |
11 | 掺氢天然气(HCNG)内燃机关键技术研发及示范应用 | 内蒙古自治区重大科技专项 | 澳门太阳娱乐网站官网 | 马凡华 |
12 | 中低压纯氢与掺氢燃气管道输送及关键应用技术研发 | 内蒙古自治区重大科技专项 | 澳门太阳娱乐网站官网 | 马凡华 |
13 | 国六天然气发动机掺氢特性研究 | 潍柴动力 | 澳门太阳娱乐网站官网 | 马凡华 |
14 | 燃料电池城市客车研究与开发 | 科技部 | 澳门太阳娱乐网站官网 | 负责氢系统与氢安全 |
15 | 燃料电池城市客车目标样车研究与开发 | 科技部 | 澳门太阳娱乐网站官网 | 负责氢系统与氢安全 |
16 | 燃料电池城市客车示范车开发与试验运行研究 | 科技部 | 澳门太阳娱乐网站官网 | 负责氢系统与氢安全 |
17 | 燃料电池客车动力系统技术平台研究开发 | 科技部 | 澳门太阳娱乐网站官网 | 负责氢系统与氢安全 |
18 | 掺氢天然气燃烧安全性 测试及评估 | 国家电投集团氢能科技发展有限公司 | 澳门太阳娱乐网站官网 | 马凡华 |
19 | 醇氢燃料发动机 | 横向课题 | 澳门太阳娱乐网站官网 | 马凡华 |
1.International Partnership of Hydrogen Energy (IPHE) Communication and Implementation Committee Member
2.中国内燃机学会汽油机燃气机分会 委员
3.国际氢能标准委员会(ISO/TC197) 委员
4.全国往复式内燃燃气发电设备标准化技术委员会 委员
5.全国氢能标准化技术委员会 委员
6.中国能源学会 理事
7.Sustainable Energy 主编
8.SAE(美国汽车工程学会) 会员
9.中国汽车工业协会燃气汽车分会 委员
11.中国质量检验协会汽车分会 副会长
科技奖励
序号 | 获奖时间 | 奖项名称 | 奖励等级(排名) |
1 | 2021 | 中重型燃气内燃机/汽车关键技术及应用 | 北京市科学技术一等奖(排名第1) |
2 | 2020 | 中重型燃气内燃机关键技术及应用 | 中国机械工业科学技术一等奖(排名第1) |
3 | 2011 | 掺氢燃料内燃机燃烧、排放基础研究 | 北京市科学技术一等奖(排名第1) |
4 | 2008 | 单一燃料CNG/LNG电控系列发动机的研制及应用 | 中国汽车工业科技进步奖二等奖(排名第9) |
5 | 2006 | 车用燃料电池发动机测试平台 | 北京市科学技术奖二等奖(排名第5) |
6 | 2005 | 车用燃料电池发动机多功能测试平台及测试规范 | 中国汽车工业科技进步奖二等奖(排名第5) |
个人荣誉
2010.10 | “突出贡献奖” | 中国内燃机学会 |
2016.10 | “十二五”机械工业先进科技工作者 | 中国机械工业联合会 |
学术成果
作为项目负责人,承担科技部重点研发计划、863、国际合作重点项目6项,承担国家自然科学基金项目1项,承担20多项地方政府科技项目和企业合作项目。已发表学术论文140余篇(其中SCI论文47篇),SCI论文总被引3000余次,2篇ESI高被引论文。
主要学术成就
(1) 研究获得了不同掺氢比对掺氢天然气燃料(简称HCNG)内燃机燃烧、排放及性能的影响规律,率先提出了HCNG内燃机湍流卷吸燃烧模型和全掺氢比范围的层流燃烧速度公式,并得到广泛应用;
(2) 研究发现:当选用20%体积掺氢比的掺氢天然气燃料时,HCNG内燃机动力性、经济性、排放等综合性能指标达到最优,这一结论为中国首个车用HCNG燃料国家标准制定提供了依据;
(3) 提出了HCNG内燃机在不同负荷条件下选择相对应的掺氢比例的协同控制方法,从而获得HCNG内燃机全工况最优综合性能;
(4) 提出了基于神经网络模型和遗传算法的HCNG发动机性能优化和标定方法,可大幅缩短HCNG发动机研发时间和成本;
(5) 与东风、潍柴、玉柴等企业合作,研发成功了多款满足国四、国五、国六排放电控喷射HCNG发动机,与原天然气发动机相比较,HCNG发动机综合热效率提升7%~10%、有害排放物降低50%~90%;
(6) 团队研制成功了四辆配装HCNG发动机的城市客车,在北京2008奥运会和贵州成功示范运行多年;
(7) 与河祡重工等企业合作,研制成功了国内首台1500千瓦富氢燃料内燃机发电机组,并投入商业运行;
(8) 作为全球环境基金(GEF)、联合国开发计划署(UNDP)与中国科技部共同实施的“中国燃料电池公共汽车商业化示范项目”(项目经费3200万美元)副协调员和国家科技项目负责人,2007年研制成功了中国第一个加氢站并连续运行至今。
代表论著
1 | Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, DEC 2007, 32(18):5067-5075 (Citation: 430) |
2 | Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-ignition engines, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, JAN 2008, 33(2):823-831 (Citation: 309) |
3 | Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, FEB 2008, 33(4):1416-1424 (Citation: 230) |
4 | Combustion and emission characteristics of a port-injection HCNG engine under various ignition timings, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, JAN 2008, 33(2):816-822 (Citation: 159) |
5 | Influence of different volume percent hydrogen/natural gas mixtures on idle performance of a CNG engine, ENERGY & FUELS, MAY-JUN 2008, 22(3):1880-1887 (Citation: 85) |
6 | An investigation of optimum control of a spark ignition engine fueled by NG and hydrogen mixtures, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,33(2008),7592-7606 (Citation: 41) |
7 | Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas S.I. engine with hydrogen enrichment, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 33 (2008)7245–7255 (Citation: 127) |
8 | Effects of combustion phasing, combustion duration, and their cyclic variations on Spark-Ignition (SI) engine efficiency, ENERGY & FUELS, AUG 2008, 22:3022-3028 (Citation: 48) |
9 | Development and validation of a quasi-dimensional combustion model for SI engine fuelled by HCNG with variable hydrogen fractions, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, SEP 2008, 33(18):4863-4875 (Citation: 73) |
10 | Development and Validation of an On-line Hydrogen-Natural Gas Mixing System for Internal Combustion Engine Testing, (2008). 1580 (Citation: 28) |
11 | A quasi-Dimensional Combustion Model for SI Engines Fuelled by Hydrogen Enriched Compressed Natural Gas, in: 2008 SAE Int. Powertrains, Fuels Lubr. Congr., SAE International, 2008, 1633. (Citation: 15) |
12 | Twenty percent hydrogen-enriched natural gas transient performance research, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,34(2009)6523–6531 (Citation: 68) |
13 | Performance and Emission Characteristics of a Spark-Ignition(SI) Hydrogen-Enriched Compressed Natural Gas (HCNG) Engine Under Various Operating Conditions Including Idle Conditions. Energy & Fuels 2009, 23, 3113–3118 (Citation: 47) |
14 | Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,35(2010) 12502-12509 (Citation: 137) |
15 | Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen enriched compressed natural gas with high hydrogen ratio, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,35 (2010)6438-6447 (Citation: 82) |
16 | Idle characteristics of a hydrogen fueled SI engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, APR 2011, 36:4454-4460 (Citation: 36) |
17 | Study on the calibration coefficients of a quasi-dimensional model for HCNG engine. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, JUL 2011, 36:9278-9285 (Citation: 10) |
18 | Experimental study on combustion and emission characteristics of a hydrogen-enriched compressed natural gas engine under idling condition, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011(36) 13150-13157 (Citation: 82) |
19 | Waste Coke Oven Gas Used as a Potential Fuel for Engines, in: SAE 2011 World Congr. Exhib., SAE International, 2011, 0920. (Citation: 8) |
20 | Effect of compression ratio and spark timing on the power performance and combustion characteristics of an HCNG engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2012(37). (Citation: 69) |
21 | Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): An experimental and artificial neural network study, Fuel, 246 (2019), 476-490. (Citation: 24) |
22 | The well-to-wheel analysis of hydrogen enriched compressed natural gas for heavy-duty vehicles using life cycle approach to a fuel cycle, International Journal of Low-Carbon Technologies, 14, (2019), 432–439. (Citation: 7) |
23 | Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition, International Journal of Hydrogen Energy, 45 (2020), 5309-5325. (Citation: 61) |
24 | Deep insights of HCNG engine research in China, Fuel, 263 (2020), 116612. (Citation: 28) |
25 | Well-to-wheels total energy and GHG emissions of HCNG heavy-duty vehicles in China: Case of EEV qualified EURO 5 emissions scenario, International Journal of Hydrogen Energy, 45, (2020), 8002-8014. (Citation: 18) |
26 | Study of laminar burning speed and calibration coefficients of quasi-dimensional combustion model for hydrogen enriched compressed natural gas fueled internal combustion engine along with exhaust gas recirculation, Fuel, 283, 2021, 119284. (Citation: 13) |
27 | Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions, Fuel, 304, (2021), 121358. (Citation: 28) |
28 | Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation, Fuel, 318, 2022, 123577. (Citation: 17) |
29 | A numerical approach to elucidate the combustion and emission characteristics of n-dodecane under hydrogen enrichment, Energy Conversion and Management, 255 (2022) 115294. (Citation: 9) |
30 | Regression prediction of hydrogen enriched compressed natural gas (HCNG) engine performance based on improved particle swarm optimization back propagation neural network method (IMPSO-BPNN), Fuel, 331 (2023), 125872. (Citation: 3) |
31 | Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms,Fuel, 333, 2023, 126320. (Citation: 7) |
32 | Combustion Characteristics of Iso-Octane/Hydrogen Flames under T and P Effects up to near Flammability Limits, SAE Technical (2023), 0148-7191. |
33 | Computational analysis of performances for a hydrogen enriched compressed natural gas engine’ by advanced machine learning algorithms, Fuel, 347 (2023), 128244. (Citation: 5) |
34 | Numerical analysis of laminar burning velocity of hydrogen and carbon monoxide-enriched natural gas (HyCONG) blends. J Braz. Soc. Mech. Sci. Eng. 45, (2023), 342. |
35 | Investigation on mixing characteristics of hydrogen and natural gas fuel based on SMX static mixer, Chemical Engineering Research and Design, 197 (2023), 738-749. |
36 | Comparative study of NH3 and H2 impacts on combustion and emission characteristics of n-Hexadecane under different flame conditions, International Journal of Hydrogen Energy, 2023, 347. |
37 | H2 impact on combustion kinetics, soot formation, and NOx emission of hydrocarbon fuel flames, Fuel, 338 (2023), 127321. |